Pinch-grasping robot handles items with precision

Preliminary tests show a prototype pinch-grasping robot achieved a 10-fold reduction in damage on items such as books and boxes.

For humans, finding and fetching a bottle of ketchup from a cluttered refrigerator without toppling the milk carton is a routine task. For robots, this remains a challenge of epic complexity.

At Amazon, scientists are addressing this challenge by teaching robots to understand cluttered environments in three dimensions, locate specific items, and safely retrieve them using a move called the pinch grasp — that unique thumb-and-finger hold that many people take for granted.

The research is part of an ongoing effort in the field of item-specific manipulation to develop robots that can handle millions of items across the kaleidoscope of shapes and sizes that are shipped to customers every day from Amazon fulfillment centers.

Watch the pinch grasping arm sort through items

We humans find and retrieve specific items with hands that are loaded with nerves connected to the brain for signal processing, hand-eye coordination, and motion control.

“In robotics, we don’t have the mechanical ability of a five-finger dexterous hand,” said Aaron Parness, a senior manager for applied science at Amazon Robotics AI. “But we are starting to get some of the ability to reason and think about how to grasp. We’re starting to catch up. Where pinch-grasping is really interesting is taking something mechanically simple and making it highly functional.”

Related content
Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

This catching up is powered by breakthrough machine learning capabilities aimed at understanding the three-dimensional geometry of cluttered environments and how to navigate in them, according to Siddhartha Srinivasa, director of Amazon Robotics AI.

“Not only are we able to build robust three-dimensional models of the scene, we’re able to identify a specific item in the scene and use machine learning to know how best to pick it up and to move it quickly and without damage,” he said.

From suction to pinching

Today, vacuum-like suction is the default technology for robots tasked to pick up and move items of different shapes and sizes. These robots typically have elastic suction cups that form to the surface of the item to be lifted, creating a tight seal that provides control. The process works well across a range of items, from gift cards to cylindrical poster tubes.

Watch the Robin robotic arm deftly handling packages

Challenges occur if a vacuum seal breaks prematurely, which can happen when the angle of attachment changes during motion.

“If you are moving really fast from one location to another, objects can swing out and then just fly away,” said Can Erdogan, a senior applied scientist at Amazon Robotics AI. “All of the sudden, there are items on the ground.”

Increased suction to prevent premature detachment can also cause damage such as blistered or ripped packaging.

Related content
New statistical model reduces shipment damage by 24% while cutting shipping costs by 5%.

In other instances, the item to be moved requires contact on more than one surface. Books, for example, flop open if lifted from only the front or back cover. Another challenge is to get a tight seal on bags filled with granular items such as marbles or sand.

Pinch-grasping mimics the firm grip of a hand, enabling the robot to safely move the item from one place to the next without dropping it or causing damage.

“We are not just interested in picking up an item. We want to move the item,” Erdogan noted. “To do that, you need to be able to control it.”

Getting a grip on the scene

People who are sighted can estimate the shape of an item they intend to move, even when part of it is obscured from view. Take the ketchup bottle in the refrigerator: Even if only the top of it can be seen, experience and context allow people to imagine the full shape. We automatically create a mental model of it and a plan to grasp and move it without spilling the milk.

One of our big investments was making sure we can visualize the scene from multiple cameras and fuse all of that information as fast as possible so that we can get the full shape of the objects.
Can Erdogan

“Our robots are not quite there yet, but to be able to grasp this item from the front and back, we need to understand this whole shape,” Erdogan said. “So, one of our big investments was making sure we can visualize the scene from multiple cameras and fuse all of that information as fast as possible so that we can get the full shape of the objects.”

This 3D scene understanding is generated by multiple camera angles along with machine learning models trained to recognize and estimate the shape of individual items that help the robot compute how to grasp the item on two surfaces.

A set of motion algorithms take this understanding of the scene and item identification and combine it with the known dynamics of the robot — such as arm and hand weight — to calculate how to move the object from one place to another. The fusion of these models allows the robot to execute a pinch grasp and move something without bumping into other items.

In addition, multiple cameras provide a set of eyes on the scene — also known as continuous perception — to monitor the grasp and movement of an item so that the robot can adjust its plan of motion as necessary.

That’s an advance for robots, which typically “look at the scene, make a decision of what to do, and then do it. It’s almost like they close their eyes after they decide what to do, which is quite a shame because there are things going on in the scene while you’re doing it. Most of the damage to items happens in those moments,” Erdogan said.

Move fast, don’t break things

An advantage of suction is speed. That’s because contact is on a single surface. This allows a robot to quickly pick and move items such as chocolate bars from a shelf to a box. Grasping an item on two surfaces is more complicated, and thus takes longer, Erdogan noted. To make up for the extra time spent on a pinch grasp, the team optimized the robot arm to move faster.

“If you have a better grasp on the item, you can move faster. Moving faster also means you can take your time to achieve these good grasps,” he said. “We are lucky we have collaborators on our team who are focusing on motion, and we did this nice optimization where we made both the grasp and the motion faster.”

In preliminary tests, the team’s prototype pinch-grasping robot achieved a 10-fold reduction in damage on certain items, such as books, without a loss of speed when compared to robots that use suction.

“They not only showed they could grip a lot of objects, but they did it really fast — they got to 1,000 units per hour,” said Parness, who oversees the project.

The ability to grasp a diversity of items and move them quickly without damage makes pinch-grasping well suited for eventual deployment in an Amazon fulfillment center.

“What’s interesting about e-commerce, as opposed to manufacturing, is it’s much more dynamic,” Parness explained. “It’s a pen, and then it’s a teddy bear, and then it’s a light bulb, and then it’s a t-shirt, and then it’s a book.”

Fulfillment automation

For deployment in an Amazon fulfillment center, a key challenge is to generalize the robot’s item specific manipulation capability to all items available in the Amazon Store, noted Srinivasa.

Related content
By managing and automating many of the steps involved in continual learning, Janus is helping Amazon’s latest robots adapt to a changing environment.

“A majority of the items the robot is going to encounter in production it’s probably never seen before, so it needs to be able to generalize effectively to previously unseen items,” he explained. “Humans do this, too. When we see something novel, we try to map it to the nearest thing that we have encountered before and then try to use that experience from that task and modify it for a new situation.”

Another challenge is to gear the robot so that it can effectively manipulate the vast range of items available in the Amazon Store. For now, the robot uses an off-the-shelf hand to manipulate items that weigh less than two pounds, about half of the items available for purchase.

We can get to the questions that are relevant for the world of robotics in a very data-driven way. Once you have those questions, answering them is a joy. And when you answer them, you know how impactful they can be.
Siddhartha Srinivasa

Going forward, the team will need to design a hand — and associated tools — from scratch that can handle the full range of available items, Erdogan said.

What’s more, while pinch-grasping is superior to suction for some items, suction is better for others, especially flat items such as cards and rulers. A robot optimized for deployment in a fulfillment center may require suction and pinching, along with a machine learning algorithm that’s trained to decide which technique to use for any given situation, Parness said.

“As a person, you pick up a book differently than if you pick up a coin or a t-shirt,” he explained. “We need robots to be intelligent about the items they’re manipulating. If I’m picking up a hammer to hammer a nail in, I want to grasp it in a certain way. But if I’m picking up a hammer to go put it in a box to ship it to you, I want to grasp it in a different way. That’s the future of item intelligence.”

Amazon’s size, scale, and mission enable this level of robotics research, Srinivasa said, and it also enhances the effect it can have in the real world. For example, working within Amazon provides scientists with access to data on current item damage rates and models that show the improvements required to justify the investment in robotics. This provides a focus for his team’s scientists and engineers.

“We can get to the questions that are relevant for the world of robotics in a very data-driven way. Once you have those questions, answering them is a joy,” he said. “And when you answer them, you know how impactful they can be.”

Research areas

Related content

US, WA, Seattle
The Amazon Devices and Services organization designs, builds and markets Kindle e-readers, Fire Tablets, Fire TV Streaming Media Players and Echo devices. The Device Economics team is looking for an Economist to join our fast paced, start-up environment to help invent the future of product economics. We solve significant business problems in the devices and retail spaces by understanding customer behavior and developing business decision-making frameworks. You will build econometric and machine learning models for causal inference and prediction, using our world class data systems, and apply economic theory to solve business problems in a fast-moving environment. This involves analyzing Amazon Devices and Services customer behavior, and measuring and predicting the lifetime value of existing and future products. We build scalable systems to ensure that our models have broad applicability and large impact. You will work with Scientists, Economists, Product Managers, and Software Developers to provide meaningful feedback about stakeholder problems to inform business solutions and increase the velocity, quality, and scope behind our recommendations. Key job responsibilities Applies expertise in causal modeling to develop econometric/machine learning models to measure the economic value of devices and the business Reviews models and results for other scientists, mentors junior scientists Generates economic insights for the Devices and Services business and work with stakeholders to run the business for effectively Describes strategic importance of vision inside and outside of team. Identifies business opportunities, defines the problem and how to solve it. Engages with scientists, business leadership outside Devices and Services to understand interplay between different business units We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Seattle
Amazon Advertising's Publisher Technologies team is looking for an experienced Applied Scientist with proven research experience in control theory, online machine learning, and/or mechanism design to drive innovative algorithms for ad-delivery at scale. Your work will directly shape pacing, yield optimization, and ad-selection for Amazon's publishers and impact experiences for hundreds of millions of users and devices. About the team Amazon Advertising operates at the intersection of eCommerce, streaming, and advertising, offering a rich array of digital advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers reach customers across Amazon's owned and operated sites (publishers) across the web and on millions of devices such as Amazon.com, Prime Video, FreeVee, Kindles, Fire tablets, Fire TV, Alexa, Mobile, Twitch, and more. Within Ads, Publisher Technologies is building the next generation of ad-serving products to allow our publishers to monetize their on-demand, streaming, and static content across Amazon’s ad network in a few clicks. Publishers interact directly with our technology, through programmatic APIs to optimize billions of impression opportunities per day. About the role Publisher Technologies is looking to build out our Publisher Ad Server Science + Simulation and Experimentation team to drive innovation across ad-server delivery algorithms for budget pacing, ad-selection, and yield optimization. We seek to ensure the highest quality experiences for Amazon's customers by matching them with most relevant ads while ensuring optimal yield for publishers. As a Senior Applied Scientist, you will research, invent, and apply cutting edge designs and methodologies in control theory, online optimization, and machine learning to improve publisher yield and customer experience. You will work closely with our engineering and product team to design and implement algorithms in production. In addition, you will contribute to the end state vision of AI enhanced ad-delivery. You will be a foundational member of the team that builds a world-class, green-field ad-delivery service for Amazon's video, audio, and display advertising. To be successful in this role, you must be customer obsessed, have a deep technical background in both online algorithms and distributed systems, comfort dealing with ambiguity, an eye for detail, and a passion to identify and solve for practical considerations that occur when complex control-loops have to operate autonomously and reliably to make millisecond level decisions at scale. You are a technical leader with track record of building control theoretic and/or machine learning models in production to drive business KPIs such as budget delivery. If you are interested working on challenging and practical problems that impact hundreds of millions of users and devices and span cutting edge areas of optimization and AI while having fun on a rapidly expanding team, come join us! Key job responsibilities * Developing new statistical, causal, machine learning, and simulation techniques and develop solution prototypes to drive innovation * Developing an understanding of key business metrics / KPIs and providing clear, compelling analysis that shapes the direction of our business * Working with technical and non-technical customers to design experiments, simulations, and communicate results * Collaborating with our dedicated software team to create production implementations for large-scale data analysis * Staying up-to-date with and contributing to the state-of-the-art research and methodologies in the area of advertising algorithms * Presenting research results to our internal research community * Leading training and informational sessions on our science and capabilities * Your contributions will be seen and recognized broadly within Amazon, contributing to the Amazon research corpus and patent portfolio. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The Alexa Economics team is looking for a Senior Economics Manager who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The candidate will work with various product, analytics, science, and engineering teams to develop models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into data products at scale. They will lead teams of researchers to produce robust, objective research results and insights which can be communicated to a broad audience inside and outside of Alexa. Key job responsibilities Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work well in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science for business teams, so that leaders are equipped with the right data and mental model to make important business decisions. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will be customer centric – clearly communicating scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life - Review new technical approaches to understand Engagement and associated benefits to Alexa. - Partner with Engineering and Product teams to inject econometric insights and models into customer-facing products. - Help business teams understand the key causal inputs that drive business outcome objectives. About the team The Alexa Engagement and Economics and Team uses data, analytics, economics, statistics, and machine learning to measure, report, and track business outputs and growth. We are a team that is obsessed with understanding customer behaviors, and leveraging all aspects from customers behaviors with Alexa and Amazon to develop and deliver solutions that can drive Alexa growth and long-term business success. We use causal inference to identify business optimization and product opportunities. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. A day in the life We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. About the team On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Seattle, WA, USA
US, WA, Seattle
The ASFS Team is hiring an Intern in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics and macroeconomics, as well as familiarity with Python, Matlab, or R is necessary. This is a full-time position at 40 hours per week, with compensation being awarded on an hourly basis. You will use internal and external data to estimate macroeconometric models to answer critical business questions, also you will have the opportunity to collaborate with economists and data scientists. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | New York City, NY, USA | Seattle, WA, USA
US, WA, Bellevue
As an Applied Scientist on our Learning and Development team, you will play a critical role in driving the design, development, and delivery of learning programs and initiatives aimed at enhancing leadership and associate development within the organization. You will leverage your expertise in learning science, data analysis, and statistical model design to create impactful learning journey roadmap that align with organizational goals and priorities. Key job responsibilities 1) Research and Analysis: Conduct research on learning and development trends, theories, and best practices related to leadership and associate development. Analyze data to identify learning needs, performance gaps, and opportunities for improvement within the organization. Use data-driven insights to inform the design and implementation of learning interventions. 2) Program Design and Development: Collaborate with cross-functional teams to develop comprehensive learning programs focused on leadership development and associate growth. Design learning experiences using evidence-based instructional strategies, adult learning principles, and innovative technologies. Create engaging and interactive learning materials, including e-learning modules, instructor-led workshops, and multimedia resources. 3) Evaluation and Continuous Improvement: Develop evaluation frameworks to assess the effectiveness and impact of learning programs on leadership development and associate performance. Collect and analyze feedback from participants and stakeholders to identify strengths, areas for improvement, and future learning needs. Iterate on learning interventions based on evaluation results and feedback to continuously improve program outcomes. 4) Thought Leadership and Collaboration: Serve as a subject matter expert on learning science, instructional design, and leadership development within the organization. Collaborate with stakeholders across the company to align learning initiatives with strategic priorities and business objectives. Share knowledge and best practices with colleagues to foster a culture of continuous learning and development. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Nashville, TN, USA
US, WA, Seattle
Amazon Web Services (AWS) is building a world-class marketing organization, and we are looking for an experienced Economist to join the central data and science organization for AWS Marketing. This candidate will develop innovative solutions to measure the return on marketing investments. They will work closely with business leaders, scientists, and engineers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of innovative measurement solutions. They will interact with functional leaders owning events (e.g. re:Invent, summits, webinars), paid media (paid search, paid social, display), AWS-owned channels (email, website, console) as well as lead management organization to drive the development, fine-tuning and adoption of the consistent measurement framework across these diverse initiatives. We seek candidates with an entrepreneurial spirit who want to make a big impact on AWS growth. They will develop strong working relationships and thrive in a collaborative team environment. They will have the creativity, curiosity, and strong judgment to work on high-impact, high-visibility products to improve the experience of AWS leads and customers. Key job responsibilities - Apply your expertise in causal inference and ML to develop systems to measure B2B marketing impact - Develop and execute science products from concept, prototype to production incorporating feedback from customers, scientists and business leaders - Identify new opportunities for leveraging economic insights and models in the marketing space - Write technical white papers and business-facing documents to clearly explain complex technical concepts to audiences with diverse business/scientific backgrounds We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | New York City, NY, USA | Seattle, WA, USA
US, GA, Atlanta
Looking for your next challenge? North America Sort Centers (NASC) are experiencing growth and looking for a skilled, highly motivated Data Scientist to join the NASC Engineering Data, Product and Simulation Team. The Sort Center network is the critical Middle-Mile solution in the Amazon Transportation Services (ATS) group, linking Fulfillment Centers to the Last Mile. The experience of our customers is dependent on our ability to efficiently execute volume flow through the middle-mile network. Key job responsibilities The Senior Data Scientist will design and implement solutions to address complex business questions using simulation. In this role, you will apply advanced analysis techniques and statistical concepts to draw insights from massive datasets, and create intuitive simulations and data visualizations. You can contribute to each layer of a data solution – you work closely with process design engineers, business intelligence engineers and technical product managers to obtain relevant datasets and create simulation models, and review key results with business leaders and stakeholders. Your work exhibits a balance between scientific validity and business practicality. On this team, you will have a large impact on the entire NASC organization, with lots of opportunity to learn and grow within the NASC Engineering team. This role will be the first dedicated simulation expert, so you will have an exceptional opportunity to define and drive vision for simulation best practices on our team. To be successful in this role, you must be able to turn ambiguous business questions into clearly defined problems, develop quantifiable metrics and deliver results that meet high standards of data quality, security, and privacy. About the team NASC Engineering’s Product and Analytics Team’s sole objective is to develop tools for under the roof simulation and optimization, supporting the needs of our internal and external stakeholders (i.e Process Design Engineering, NASC Engineering, ACES, Finance, Safety and Operations). We develop data science tools to evaluate what-if design and operations scenarios for new and existing sort centers to understand their robustness, stability, scalability, and cost-effectiveness. We conceptualize new data science solutions, using optimization and machine learning platforms, to analyze new and existing process, identify and reduce non-value added steps, and increase overall performance and rate. We work by interfacing with various functional teams to test and pilot new hardware/software solutions. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Bellevue, WA, USA
US, WA, Bellevue
Amazon’s Middle Mile Planning & Optimization team is looking for an exceptional Sr. Applied Scientist to solve complex optimization problems that ensure we exceed customer delivery promise expectations and minimize overall operational cost while supporting Amazon’s rapid growth globally. We use cutting edge technologies in large-scale optimization, predictive analytics, and generative AI to optimize the flow of packages within our network to efficiently match network capacity with shipment demand. Our services already handle thousands of requests per second, make business decisions impacting billions of dollars a year, and improve the delivery experience for millions of online shoppers. That said, this remains a fast-growing business and our journey has just started. Our mission is to build the most efficient and optimal transportation solution on the planet, using our technology and engineering muscle as our biggest advantage. Key job responsibilities You will work closely with product managers, research scientists, business/operations leaders, and technical leadership to build capabilities that transform our transportation network. This includes analyzing big data, building end-to-end workflows, prototype optimization/simulation models, and launch production capabilities. You will have exposure to senior leadership as you communicate results and provide scientific guidance to the business. Your insights will be a key influencer of our product strategy and roadmap and your experimental research will inform our future investment areas. About the team You will join the Surface Research Science (SRS) team, which is the science partner of the Middle-Mile Planning & Optimization tech organization. SRS is working on a fascinating range of problems, including some of the hardest and largest optimization, simulation, and prediction problems in the industry. Examples are long-term and short-term demand forecasting, capacity planning, driver scheduling, vehicle routing, and equipment rebalancing problems. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA