
An empirical study of Namecoin
and lessons for decentralized namespace design

Harry Kalodner*, Miles Carlsten*, Paul Ellenbogen*, Joseph Bonneau†, Arvind Narayanan*

*{kalodner,carlsten,pe5,arvindn}@cs.princeton.edu †jbonneau@gmail.com

Princeton University

Abstract
Secure decentralized namespaces have recently

become possible due to cryptocurrency technol-
ogy. They enable a censorship-resistant domain-
name system outside the control of any single en-
tity, among other applications. Namecoin, a fork of
Bitcoin, is the most prominent example.

We initiate the study of decentralized names-
paces and the market for names in such systems.
Our extensive empirical analysis of Namecoin re-
veals a system in disrepair. Indeed, our methodol-
ogy for detecting “squatted” and otherwise inactive
domains reveals that among Namecoin’s roughly
120,000 registered domain names, a mere 28 are
not squatted and have nontrivial content. Further,
we develop techniques for detecting transfers of do-
mains in the Namecoin block chain and provide
evidence that the market for domains is thin-to-
nonexistent.

We argue that the state of the art in mecha-
nism design for decentralized namespace markets
is lacking. We propose a model of utility of differ-
ent names to different participants, and articulate
desiderata of a decentralized namespace in terms
of this utility function. We use this model to ex-
plore the design space of mechanisms and analyze
the trade-offs.

1 Introduction
Decentralized namespaces. We initiate the

study of decentralized namespaces from an eco-
nomic perspective. A namespace, as we define it,
is an online system that maps names to values. The
Domain Name System (DNS) is the most promi-
nent example. A web service such as Twitter that
allows users to claim usernames and create profiles

can be thought of as implementing a namespace. To
be memorable by humans, namespaces must sup-
port arbitrary user-chosen strings as names. To be
secure, namespaces must map each name to the
same value for all users; adversaries shouldn’t be
able to convince a user that any other value is cor-
rect.

The problem of decentralized namespaces has
long been recognized as an important one. The
DNS is a critical yet centralized component of the
Internet and those who control it can alter the web
for all users. The controversies around the shut-
downs of wikileaks.org and the 2011 domain
name seizures by the U.S. DoJ and DHS illustrate
why many researchers and activists have sought de-
centralized alternatives [1].

The above three properties — security, user-
chosen names, and decentralization — are known
as Zooko’s triangle [2]. Until 2011, designing a
system that exhibited all three was conjectured to
be impossible [3]. The rationale was that enforc-
ing the uniqueness of name-value mappings and a
consistent view of the directory for all participants
would require a centralized server or a hierarchy.

Cryptocurrencies and Namecoin. Cryptocur-
rency technology enables building a namespace
with all three properties. Put simply, the block
chain is a global, distributed data structure that can
be repurposed as a directory. Miners execute a con-
sensus protocol to establish the state of the system
and are incentivized to do so by mining rewards
they receive in exchange for their participation. As
long as a majority of miners — weighted by com-
puting power — follow the protocol, all users will
see a consistent view of the directory when they
query it. This in turn gives the system, and hence

1



the underlying currency, economic value, making
miners’ actions profitable to them.

Namecoin is a cryptocurrency that realizes a de-
centralized namespace. It is the first altcoin from
Bitcoin with its own block chain. It offers the
same features as Bitcoin with the addition of a
name/value store that can be used to hold arbitrary
data (see Section 2). The name/value store supports
various applications; primarily, Namecoin has been
used for domain-name resolution for the ‘.bit’ alter-
native TLD, and by the online identity service, One-
Name, which utilizes the Namecoin block chain to
record data about its members.

Namecoin offers a novel solution to the techni-
cal challenges of decentralized namespaces. How-
ever, there are also economic challenges. These
arise from the fact that although namespaces theo-
retically support infinitely many names, the supply
of names that are memorable and meaningful to hu-
mans is scarce. Allocating these names to users is
therefore a mechanism-design challenge. The cen-
tral thesis of this work is that this mechanism de-
sign challenge is far harder than realized. A system
that gets it wrong may “work" in a narrow technical
sense, but may not be useful to real users.

Specifically, there are several crucial questions to
consider: how do we model the economic behavior
of the users of a namespace and what are the goals
of mechanism design for namespaces? How well
does Namecoin succeed at attaining these goals and
what are its limitations? If Namecoin is not the
ideal design, can we analyze the design space as a
guide to the creators of future decentralized names-
paces?

Our contributions. Along the above lines, we
make the following contributions. We begin by
proposing a model of utility of different names to
different participants and articulating desiderata of
a decentralized namespace in terms of this utility
function (Section 3). We highlight the difficulty of
mechanism design even in a toy model and explain
the importance of making the model more realistic
by incorporating extensions such as time-varying
preferences.

The central contribution of this paper is a thor-
ough empirical analysis of the Namecoin ecosys-
tem. We develop a series of criteria based on the
block chain, network behavior, as well as content to
distinguish active websites from parked or squatted

names (Section 4). This allows us to iteratively fil-
ter our dataset of around 120,000 registered names
in Namecoin, leaving a mere 28 that are not squat-
ted, and have nontrivial content.

We then delve deeper into the economics of
names. Namecoin has a built-in ability to transfer
names, which is a secure way to trade them using
the block chain. However, it is not obvious which
transactions correspond to such sales, as opposed to
regular name updates. We develop a novel analytic
technique to distinguish the two types of transac-
tions and find evidence for about 250 transactions
in the entire history of Namecoin that may represent
sales of names (Section 5). Of course, it is possible
that more sales have occurred off the block chain,
but there doesn’t appear to be a widely known mar-
ketplace for Namecoin names.

Based on all the empirical evidence we present,
we are left to conclude that the Namecoin ecosys-
tem is dysfunctional. The vast majority of regis-
tered names represent squatting and there is little
evidence of a secondary market for names. While
there could be many factors that explain the lack
of adoption, there appears to be clear room for im-
provements in the design to minimize squatting and
other problems. To this end, in Section 6, we ex-
plore the design space of decentralized namespaces
and make recommendations.

Why study namespaces? Although we find
that the Namecoin ecosystem is in disrepair, study-
ing namespaces is important. While there cur-
rently doesn’t seem to be widespread dissatisfaction
with today’s DNS causing users to seek censorship-
resistant alternatives, the existence of such alter-
natives provides a valuable hedge against a poten-
tially abusive central authority. Besides, domain
names are just one application of namespaces. Cen-
tralized directories for user public keys have fared
much less well than DNS, and the service One-
Name, which we discuss in Section 8, is an inter-
esting alternative. Yet other applications for names-
paces such as control of digital assets have been
proposed. And of course, the problems posed by
namespaces are intellectually interesting to study.
We think decentralized namespaces have many im-
portant applications, but their promise hasn’t been
realized so far. Our work helps understand why this
might be and lays the groundwork for a more rigor-
ous approach to building such systems.

2



2 Background: Namecoin
In this section we cover the background of

Namecoin. We begin by looking at the history of
the cryptocurrency and then explain why a block
chain can be used for our definition of a namespace.
We then proceed to discuss the technical design of
Namecoin and the mechanisms used in the design.
We conclude this section with a discussion about
the applications of Namecoin.

A note about the term ‘namespace’. In com-
puter science, a namespace is simply a container
for a set of names, so that names in a single names-
pace must be unique but the same name can exist
in different namespaces. We have chosen to use the
term in a related but different way: it’s a system that
includes client and server software, users, a mecha-
nism, and so on. In fact, Namecoin contains names-
paces in the computer science sense, which we term
subspaces in this paper.

2.1 History
Namecoin is an alternative cryptocurrency, or alt-

coin, modeled after Bitcoin [4]. Furthermore, it is
the first altcoin in the sense that it was the first to
create its own block chain, separate from Bitcoin’s.
Namecoin shares many similarities with Bitcoin,
including the same method for proof-of-work, the
same coin cap, the same block creation time, and
all of the same transaction operations (with a few
additions). Namecoin was inspired after discus-
sions about a BitDNS [5] protocol using a block
chain to manage a domain name lookup service.
The motivation was that a central authority man-
aging domain names, such as ICANN, requires too
much trust in a single entity and represents a sin-
gle point of failure. The first Namecoin block was
mined in April 2011, and as of this writing, over
215,000 total blocks have been mined in the Name-
coin system. Because of its similarities with Bit-
coin, Namecoin was able to be merge-mined and
has been merge-mined with Bitcoin since October
8, 2011 (see the next subsection).

2.2 Description of the block chain
Namecoin is minted and maintained by a decen-

tralized peer-to-peer network.1 Namecoin transac-
tions require the digital signature of the account
holder to prevent theft, and every transaction is

1This description is adapted from [6].

published in an append-only hash chain, called the
block chain. The block chain can be extended with
new transactions by any participant, and such par-
ticipants (known as miners) obtain newly minted
Namecoin currency (NMC) and transaction fees
from the transactions for performing this function.
Extensions to the block chain require a proof-of-
work that rate-limits the process (to approximately
one extension every ten minutes) which enables a
steady inflation rate, ample competition among par-
ticipants to extend the block chain, and adequate
time to obtain and verify the history of the block
chain for new participants. Informally, the proof-
of-work protocol in Namecoin is intended to main-
tain the following two essential properties about the
block chain:

• Every party eventually agrees on the order and
correctness of transactions in the block chain.

• Any party can publish a transaction (for a
fee), which will then be verified and, if valid,
included in the block chain within a small
bounded delay.

One use case for a block chain is a tamper-
evident log. That is, it can be used as a data struc-
ture that stores user-supplied data, and allows users
to append data to the end of the log. Each new block
has a hash of the previous block, so if data that is
earlier in the log is altered, it will be detected. If
an adversary wants to tamper with data anywhere
in this entire chain, in order to keep the hash point-
ers consistent, he will have to tamper with the hash
pointers all the way up to and including the cur-
rent block. Thus it emerges that by just remember-
ing the single hash pointer of the head of the chain,
users essentially remember a tamper-evident hash
of the entire list, all the way back to the genesis
block. Namecoin, and all block chain based cryp-
tocurrencies, use this tamper-evident log in order to
record all the transactions between users.

Block chain security. The value and stability of
a cryptocurrency are directly related to the amount
of proof-of-work involved in the calculations of the
blocks because this work is what keeps the data
distributed and secure in the tamper-evident block
chain. For both Bitcoin and Namecoin, the proof-
of-work is shown by calculating the hash of a new
block and a random nonce over and over until the

3



calculated hash has a certain number of leading ze-
ros. The number of leading zeros required by the
hash is referred to as the difficulty threshold. Name-
coin enjoys a very high difficulty threshold for the
proof-of-work because it is similar to Bitcoin and
supports “merge mining” with Bitcoin. This means
that miners who are mining Bitcoin can also choose
to mine Namecoin at the same time with no ex-
tra work. Essentially, this is because the miner is
using their computational power to solve a crypto-
graphic puzzle that satisfies the proof-of-work for
both block chains at the same time. This is advan-
tageous for the miners because they are rewarded
with coins from both systems, and helps Namecoin
because it gives the Namecoin network a vastly in-
creased amount of hash power over what it would
have if it did not support merged mining. Includ-
ing the merge miners, Namecoin has aproximately
one third the hash rate of Bitcoin. This provides
resilience to a 51% attack, although a sufficiently
large Bitcoin mining pool could still execute this
attack.

2.3 Technical details of names
In this subsection and the next, we present details

of Namecoin, separating the technical solution from
the mechanism design choices.

The feature that separates Namecoin from Bit-
coin is that Namecoin is a namespace, and can be
used to register name/value pairs that can be stored
in the block chain and traded amongst individu-
als. This registration is done using the three script
operations exclusive to Namecoin: NAME_NEW,
NAME_FIRSTUPDATE, and NAME_UPDATE. In
order to understand the registration process, we
think it is helpful to walk through the registration
process of name, roughly following Figure 1.

NAME_NEW. To start, the user will need to se-
lect a coin to be crafted into a token (or special
coin) that represents a name and whose value can
be changed by whoever possess the token. The
next step to register a name is to make a transac-
tion that uses the NAME_NEW script operation in a
transaction sending the token from one of their ad-
dresses to another. Using NAME_NEW, a user can
indicate an interest in name for a name/value pair
by posting a hash commitment of the desired name
in the scriptPubKey of the transaction. The reason
the user posts the name in hashed form first, rather

than in plaintext, is to prevent front-running, which
we will explain in Section 6. The NAME_NEW op-
eration acts as a signal in the block chain for name
parsers to indicate that the next part of the script-
PubKey will be the hash commitment to a name.

NAME_FIRSTUPDATE. After doing this, and
waiting for 12 or more blocks on top of the one
containing the NAME_NEW transaction (to ensure
that the block chain reaches consensus on the
NAME_NEW transaction), the same user can use
the output of the NAME_NEW transaction as the
input for the NAME_FIRSTUPDATE transaction.
Once completed, this will associate the chosen
name with value selected by the user. Simi-
lar to NAME_NEW, NAME_FIRSTUPDATE allows
data to be posted in the block chain as part of the
scriptPubKey of a special transaction. To create a
NAME_NEW transaction, a user will select, as input,
the output of the NAME_NEW transaction. They will
then use another address they control as the out-
put for the transaction. The scriptPubKey of this
transaction will contain a NAME_FIRSTUPDATE,
the name desired, the random nonce used in the
NAME_NEW hash commitment, and the first value
for the name to take.2 In order for this transaction to
be valid, a miner will verify that the name and the
provided nonce do, in fact, hash to the commitment
in the appropriate NAME_NEW transaction. The out-
put of this transaction now contains the token repre-
senting the name/value pair for name and value,
and whoever can unlock and spend the output can
utilize the final new operation, NAME_UPDATE.

NAME_UPDATE. The third and final new op-
eration in Namecoin is the NAME_UPDATE opera-
tion. Again, this operation’s arguments (the name
and newValue) are stored in the scriptPubKey of
a special transaction. This transaction must have as
input a NAME_FIRSTUPDATE or NAME_UPDATE
output with the same name. This operation has
three uses: updating, renewing and trading a name.
If the user wants to change the value associated
with a given name, they will update name with
this operation, providing a newValue. If names
can expire, as they do in Namecoin, then this opera-
tion can also be used to renew a name by providing
a newValue that is the same as the old value.

2There are also other operations that exist for reasons of
compatibility with Bitcoin; this seems to exist to minimize
changes to Bitcoin’s script handling code.

4



Figure 1: Namecoin name registration protocol described in Section 2.3

In either of these cases, the user will use an ad-
dress they control as an output of the transaction.
The final reason to make a NAME_UPDATE trans-
action is to trade the special coin to another user.
In this case, the user will put, as an output, one
of the other user’s addresses instead of their own.
Once the transaction resolves, the other user will
have control over the special coin and can change
the value to whatever they deem fit. Because the
ownership of name is associated with the owner-
ship of the special coin, if the buyer is paying for
the name with Namecoins, the exchange between
the payment and the name can be atomic (meaning
they happen in the same transaction and either are
only valid if the other is as well).

2.4 Mechanism design

Fees. Namecoin has been implemented with
various fees and protocols to incentivize the be-
haviors of the users. The special token used in
the NAME_NEW transaction has a value of 0.01
NMC. This coin will be not be spendable like
other Namecoins while it has a name attached
to it. For all of the transactions, NAME_NEW,
NAME_FIRSTUPDATE, and NAME_UPDATE, the
default behaviour is to have the user pay a transac-
tion fee to the miner. The current expected transac-
tion fee, which is programmed into the Namecoin

client, is 0.005 NMC on each transaction. Histori-
cally, Namecoin also had a network fee attached to
the NAME_FIRSTUPDATE transaction. The net-
work fee is different from the transaction fee; the
transaction fee is paid to the miners, whereas the
network fee was destroyed (with an OP_RETURN)
when a NAME_FIRSTUPDATE transaction was
confirmed. The network fee varied over time —
it started at 50 NMC at the genesis block, but de-
creased by a factor of 2 every 8192 blocks (which
is approximately 2 months). The purpose of the net-
work fee was to have a large initial cost to claiming
names to deter users from quickly claiming all the
desirable names, but then decay off so that eventu-
ally the cost of registering a name becomes negli-
gible. As of block 85585, the network fee became
small enough that it rounds to 0 and is no longer
added onto the transaction. The current implemen-
tation of Namecoin has no fees other than the trans-
action fees and the investment of the token coin.

Expiration. Namecoin has an expiration
time for names. Originally, the time period
for a name to expire was 12,000 blocks, but
by March 2012, the expiration period was in-
creased to 36,000 blocks (which comes out to
about 250 days). If a particular name hasn’t
been mentioned in a NAME_FIRSTUPDATE
or NAME_UPDATE in 36,000 blocks, the name

5



becomes available again for any user to claim
with NAME_NEW and NAME_FIRSTUPDATE.
Similarly, a NAME_UPDATE must cite a
NAME_FIRSTUPDATE or NAME_UPDATE
that is less than 36,000 blocks old as input.

Changing the protocol. Changing the protocol
in a cryptocurrency requires a “hard fork” or a “soft
fork” depending on the extent of the change. In a
mature system like Bitcoin, this is very difficult.
In a fledgling system like Namecoin, however, it
is much easier has happened multiple times. Both
the addition of merge mining with Bitcoin, and the
increase in expiration length were not initially in
the design of Namecoin and required hard-forking
changes. In order to make these changes, the
Namecoin community decided on arbitrary blocks
at which point the new protocol would be enforced.
Explicitly, up to block 19,199 blocks that were
merge mined with Bitcoin were not allowed into the
Namceoin block chain, but starting on block 19,200
they were.

2.5 Applications
There are many different subspaces in Namecoin,

and the different subspaces correspond to applica-
tions. When claiming a name, a user prepends the
name with a subspace ID and a slash. Namecoin
was created to be very general so that it would be
useful for any application that would benefit from
an online name/value store. While d/ has the most
registered names, there are many used subspaces in
Namecoin. The separation of namespaces is not
enforced by the protocol in any way, but merely
agreed upon by consensus of all users, analogous
to open web standards.

.bit Domains. The vision for Namecoin was
to use one of these subspaces for DNS lookup in
the .bit TLD. Explicitly, Namecoin names associ-
ated with .bit domains are prepended with the sub-
space ID d/. If a user wanted the domain exam-
ple.bit, they would claim the name d/example.
The owner of example.bit would then set the value
to their server address in a way that would be under-
stood by .bit compliant DNS servers as described in
the .bit specification [7].

Most major web servers, such as Apache, ngnix,
and lighthttpd will accept connections through .bit
domains with minor modifications to their per-site
configuration files.

There are a number of ways to resolve .bit do-
mains to IP addresses with varying levels of se-
curity. The most secure option is running local
DNS resolution software. The three major projects
created for this purpose are NMControl [8], a lo-
cal DNS server, FreeSpeechMe [9], a Firefox add-
on, and DNSChain [10], another browser extension.
NMControl and FreeSpeechMe both hold a local
copy of the block chain and query it for values as-
sociated with .bit domains. They parse the value
of the name using the specification and seamlessly
direct the user to the resolved IP address.

There are a couple less secure options to access
.bit domains. Users can connect to specific DNS
servers such as OpenNic [11] which support resolv-
ing .bit domains. However this requires trusting
that the DNS server is working properly and ac-
curately reporting results. A final option is using
a proxy server hosted in a standard TLD. This re-
quires no local configuration, but users must go to
example.bit by visiting example.bitproxy.com.

OneName. The name/value data store in Name-
coin has applications beyond DNS. OneName is an
online identity service that runs on top of Name-
coin, making use of the data store. OneName is
a centralized service, but one can use other clients
to interact with the block chain in a way that’s
interoperable with OneName. The idea behind
OneName is that a user can have a name/value
pair in the block chain that associates said name
with different online identities such as an email,
GitHub, Twitter, and Bitcoin address. A One-
Name user can then confirm ownership of ac-
counts on any of these services by referencing their
OneName name through some messaging channel
in each respective system. For example, if Al-
ice wants to tie her twitter username to her One-
Name username, she must tweet the message “Ver-
ifying that +Alice is my openname (my Bitcoin
username). https://onename.com/Alice”.
This is similar to the verification scheme Keybase
[12] uses. A OneName account also has an asso-
ciated Bitcoin address so users can easily find an
address to use to send Bitcoins to a particular indi-
vidual, if they want.

In order to make a OneName identity, a user
can visit OneName’s website to create an account.
A user makes an account by selecting a username
and then optionally entering in their actual name,

6



their account names, a short biography and picture,
and a Bitcoin address. OneName takes the infor-
mation given to it and automatically puts it into
a name/value pair, with the name equal to the se-
lected username, and the value containing all the
other data. If the username is not already claimed
by some user in the Namecoin subspace u/, then
OneName posts this pair into the block chain. If it
is already taken, the website will ask the new user
to select a different username. If a user so desires,
they can alternatively manually create a name trans-
action using the Namecoin client to create a name
value pair with a name in the u/ subspace and a
value formatted to match the OneName specifica-
tions. To incentivize using their website interface,
OneName covers the Namecoin fees for their users.

3 Modeling namespaces
Names are scarce. Many types of systems map

keys or names to values. In his essay introducing
his triangle, Zooko considers naming systems that
include a system mapping PGP key fingerprints to
keys. Fingerprints are hashes of keys. This would
not qualify as a namespace by our definition be-
cause users cannot pick arbitrary names — that
would require finding the hash pre-image of an ar-
bitrary name (fingerprint), a hard problem by the
definition of a hash function. Zooko (and similar
prior work) considers such systems to lack human
memorability of names. We replace this criterion
with that of user choice of names, which is roughly
equivalent but easy to define rigorously.

In a system that maps key fingerprints to keys,
names are fungible and essentially infinite, and thus
not scarce and have no market value. On the other
hand, in any system that we call a namespace,
scarcity is an almost inevitable consequence of free
user choice. Even when names are scarce, the sys-
tem architecture can make names more or less valu-
able. For example, usernames on Twitter are more
valuable than on Facebook — the username or han-
dle is a relatively important way to find a user on
Twitter, whereas on Facebook it is done more often
by navigating the social graph.

The scarcity of names makes the design of
namespaces challenging. But it also makes the
problem particularly amenable to cryptocurrency-
based solutions. Since names have market value,

and participation in the primary market requires the
associated cryptocurrency, the currency becomes
valuable. This incentivizes miners, making the sys-
tem secure.

The (non) role of trademarks. Scarcity is also
an issue in centralized namespaces, but it manifests
in different ways. One key goal of most central-
ized systems is trademark protection. The trade-
mark system can be seen as a legal mechanism to
address the problems of name scarcity and limits of
human memorability in the real world, independent
of any particular technological system. Most cen-
tralized systems support some form of arbitration or
dispute resolution in which trademark plays a role.3

In a decentralized system, on the other hand, there
is no easy way to enforce any rules that cannot be
encoded algorithmically. As of yet there is no way
to cryptographically assert that one is the owner of
a trademark, and this may be impossible given the
complexity and nuance of modern trademark law.

Primary and secondary markets, algorithmic
agents. We use the term primary market to mean
the part of the market where new names are issued
to users for the first time. By contrast, the sec-
ondary market deals with the sale of a name already
in use.

Whom do names “belong to” before they are sold
on the primary market? To answer this, we must un-
derstand decentralized agents. Any cryptocurrency
can be thought of as an algorithmic agent executed
as a global, distributed computation. The agent has
no capability to store private information but it can
hold funds and transact with users of the system.
Bitcoin encodes a very simple agent whose only
function is to release currency into circulation at a
pre-specified rate.4

In a nutshell, the agent implemented by a names-
pace initially owns all names and sells them to
users. As we’ll see in Section 6, there are
many variants including whether names are sold or
leased, whether or not they can be bought back,
how names are priced, what the agent does with the
funds received as payment, and so on.

3For example see ICANN’s Uniform Domain-Name
Dispute-Resolution Policy [13].

4At the other extreme, altcoins such as Ethereum allow any
user to create an agent by making the central agent “Turing
complete,” that is, flexible enough to execute arbitrary pro-
grams specified by users on their behalf.

7



The most straightforward implementation of a
secondary market is to leave it entirely external to
the system. This is the approach taken by Name-
coin, but again, a variety of choices are possible.
We elaborate in Section 6.

Squatting. Even though names are scarce, it’s
not obvious what “squatting” means. After all, ma-
terial goods are scarce, but we don’t usually char-
acterize car owners as squatting on them. The dif-
ference is that names have (vastly) different utility
to different users. A squatted name is one that is
owned by a user whose utility for that name is close
to zero (or very small compared to the user who has
the most utility for that name), purchased in hopes
of selling to another user whose utility is higher.

Is squatting a problem for the system? This is a
tricky question. If squatting exists merely because
one side of the primary market is an algorithm and
doesn’t charge market price, then squatters could
be seen as analogous to brokers or ticket scalpers.
Such agents are sometimes considered to perform
a useful function as market makers [14], or at least
tolerated, but not considered an existential threat to
the functioning of the market.

On the other hand, squatters can be viewed as
analogous to land speculators. This analogy is sup-
ported by the fact that names, like land but unlike
tickets, are not fungible. The speculator may have
zero utility for a name and makes no use of the
name himself; he hopes that demand for a name
will rise in the future, and may therefore not sell
to a buyer who has a positive utility today. This
could lead to a market failure in a few ways. The
uncertainty around future demand means that some
names may be squatted indefinitely, while legiti-
mate users may end up with sub-optimal names. If
most valuable names are locked up by squatters, it
may prevent the growth of the system, in turn pre-
venting the growth in market price for names that
speculators are hoping for. Land speculation has
also been criticized as contributing to a market fail-
ure [15].

In this view, squatting may exist and may be
problematic even if the primary market is able to
discover the market price. But if the primary mar-
ket is algorithmic, it only exacerbates the squatting
problem.

Complexity of the utility function. Our argu-
ment above is essentially that the utility of a given

name to a given user may vary with time. This
is particularly relevant to cryptocurrency-based
namespaces — in addition to the usual network ef-
fects that make the adoption of some new products
challenging, cryptocurrencies need to “bootstrap,”
which presents an additional difficulty in getting
off the ground. A cryptocurrency may not be suf-
ficiently secure if it has too few users. Thus, many
users may have a zero or negligible utility for all
names until they decide that the namespace is se-
cure enough and has enough users to be worthy of
taking seriously.

Another aspect of complexity of the utility func-
tion is diminishing marginal utility. A user named
John Smith may want either the name JohnSmith
or john-smith but not necessarily both. Time-
variation and diminishing marginal utility make the
mechanism design problem very tricky.

Suppose, to the contrary, that utility functions are
time invariant, and utility functions of a user for dif-
ferent names are independent. Then we may state
the goal of the system as ownership of each domain
by the user with the maximum utility (or willing-
ness to pay) for that domain, as long as that value is
above some threshold. We can easily realize this by
making the primary market a second-price auction
with a reserve price. No secondary market would
be necessary.

Of course, this is oversimplified. Let’s add di-
minishing marginal utility to this model. Sup-
pose there are 10 John Smiths in the world and
10 variations of the name JohnSmith. A 10x10
matrix describes the utility of each user for each
name. Further, none of these users has any util-
ity for more than one name. Now we can state a
welfare-maximization goal of finding the assign-
ment of names to users that maximizes the sum
of each user’s utility for his assigned name, which
translates to a maximum weighted graph matching
problem. Or we could be happy with a Pareto-
efficient assignment; since this is one-sided market
(names aren’t agents), this is the house allocation
problem [16]. This shows that even in a highly sim-
plified setting with a finite number of names and the
same number of users, the mechanism design ques-
tion is very tricky.

When we add time-varying preferences to the
model, it is unclear if we can even formally state
a goal for the system. The harder we make it for

8



a user to hold on to a purchased name, the easier
it becomes for an adversary to “seize” a name (see
below).

At any rate, the fact that preferences are time
varying appears to be part of the reason that names
in Namecoin expire and must be renewed; in effect,
they are leased rather than purchased outright.

Seizures. The Namecoin community considers it
a major goal to prevent “seizures” of domain names
by adversaries [17]. To prevent seizures, then, it
must be easy to hold on to a name after buying
it. This is in tension with preventing speculation,
which works by buying a name and holding on to it
despite other people wanting it.

The reason it is even technically possible to pre-
vent such censorship in the face of a well-funded
adversary is that the adversary can’t possibly pre-
emptively buy up all the names that the victim
might use. For example, Wikileaks might find any
name with the string “wikileaks" in it to be accept-
able, even if not ideal, for their purposes. In other
words the victim’s utility function has a large sup-
port; the adversary’s utility for a name is contingent
on the victim owning that name.

4 Analysis of .bit domains
In this section we analyze the current state of .bit

domains. We begin at the highest level, looking at
the repetition of values in order to detect squatters.
Next we look at how many .bit domains are set up
with query-able values. Finally we actually visit
these query-able names and analyze the content we
find there.

4.1 Detecting squatters
We investigate the balance between squatters and

other users in the .bit subspace. As we discussed in
3, squatting is a critical issue in any decentralized
namespace. We look at Namecoin in order to get a
realistic view on the proliferation of squatting.

Namecoin possesses the same pseudonymity
properties as Bitcoin and thus it is difficult to group
names by their owner. Names are owned by indi-
vidual addresses rather than by identities and it is
a common practice to keep each purchased name
under a different address. Because of this, it is dif-
ficult to assess how many names any single entity
owns.

Figure 2: Analysis of squatting. Names whose
values occur more than about 10 times can
be safely considered to be squatted. In fact,
the graph shows that the majority of names
are held by prolific squatters who control thou-
sands of names.

However, many squatters are easily identified
through the values they set for the names they own.
Since there is no built-in functionality for the list-
ing and sale of names in Namecoin, squatters use
the values of names they own to display contact
information. This information generally comes in
the form of either contact information stored di-
rectly in the value of a name, or contact information
stored at the IP address to which the name resolves.
We observed that a squatter’s contact information is
generally constant among all the names they own.
Thus, by measuring the extent to which values are
duplicated on the block chain, we can estimate the
ratio of squatters to genuine users.

Regular .bit domain owners are unlikely to use
values that are highly replicated. The value of a
domain points to an individual server and most are
unique. Repetition may occur in this circumstance
is when multiple names resolve to the same point.
This could occur when a single DNS server is re-
solving a large number of names to different web-
sites. However when we performed the content
analysis described in Section 4.3, we found that this
does not happen currently.

There is no definitive threshold for deciding ex-
actly how often a value has to occur in order to
assume a squatter has been detected. However
even the coarsest grained approach displays a mas-
sive amount of squatting on the block chain. Of

9



Type of resolution Count
Nameserver URL 3200
Nameserver IP 148
Single IP 5848
Multiple IP 2
Single IPv6 2
Multiple IPv6 1
Tor 9
Alias 23
Only subdomains 2
Total 9354

Table 1: Comprehensive list of .bit domain res-
olution methods currently in use.

the 196023 currently active names, there are only
34361 unique values.

In Figure 6 we examine the fraction of current
.bit names that are squatted. We sorted all of the
values that occur by the number of times they oc-
cur. The graph has a very sharp initial drop as we
remove all names with values that occur only a few
times. This leaves the majority of domains to drop
off very slowly as we remove bigger and bigger
squatters. Using a cut-off of n = 10, it appears safe
to say that at least 76% of .bit domains are held by
squatters.

4.2 DNS records
We now examine how .bit domains are used by

genuine users. Only 9354 out of the 119624 .bit do-
mains make any attempt to resolve to an IP address.
Out of these a variety of types of IP resolution are
employed.

In order to support DNS lookups, Namecoin pro-
vides a specification that allows for the support of
most DNS record types. A name’s configuration is
stored in a JSON dictionary object which is placed
in a name’s value. Domain’s can be configured
in a number of different ways. The main meth-
ods are directly setting one or more IP (or IPv6)
addresses or setting one or more secondary name-
servers which hold information about a domain.
Additionally records can link a name to a number
of hidden-services URL schemes like .onion [18]
and .i2p [19].

Namecoin supports a number of different name
resolution methods. Different methods have differ-
ent properties and thus it is interesting to inspect

Criteria applied Count
Total Names 196,023
Valid DNS 9354
Curlable 5374
Not squatter 745
Without duplicates 455
Without errors 278
With content 222
Without ICANN hostname 28

Table 2: Number of .bit domains which resolve
to real content

how people are setting up their domains. The vast
majority of names point directly to an address. This
includes people using IP, IPv6, and Tor. This is by
far the most privacy preserving method since the IP
address is drawn directly from the block chain. A
client can simply look up a name in the block chain
and immediately connect to the server. However,
this privacy comes at the cost of flexibility since the
server is directly encoded in the block chain and can
not be changed without an update.

The much more flexible configuration, also com-
monly used, is name server delegation. Rather than
directly listing an IP address in the block chain, one
or more name servers are listed. This way a name
owner can update their IP address without modi-
fying the block chain. However this is an inse-
cure delegation since Namecoin can not enforce any
properties regarding the action of the external name
server. The server will have full control over its
interaction with users including the ability to track
lookups or return results which aren’t globally con-
sistent.

4.3 Domain content analysis

After understanding how people connect their
names with IP addresses, we explored what sort
of content is reachable through .bit domain names.
We attempted to download the front page of each
of these 9354 domains over port 80 (HTTP). 3881
of these domains were unreachable or didn’t serve
web content, leaving us with only 5374 responsive
domains.

Looking at the content of the servers’ responses,
we found that of the responsive 5374 domains,
4629 are owned by 3 different squatters. These do-

10



mains serve nothing of value and caused massive
inflation in our reachable domain count.

Removing the squatters, we count 745 viable do-
mains. However, many of these pages are mirrors or
duplicates of each other. After removing 290 such
duplicates, 455 domains remained.

A large number of pages were either error re-
sponses from the server or default pages from vari-
ous web servers. Neither of these can be considered
useful content. There were 177 such domains, and
removing them left us with 278 domains.

Out of the remaining sites, many had very small
amounts of content consisting of only a few words
on a blank page like, "Welcome to mysite.bit."
These pages, though valid uses of Namecoin, pro-
vide minimal utility to a visitor. Thus, we decided
to look at only pages consisting of 15 or more words
and images which brought us down to 222 domains.

These 222 domains make up the only websites
reachable through .bit domain names which have
any real content on them at the time of this analy-
sis. We are further interested in the subset of these
pages which don’t come from a server that is acces-
sible through a standard ICANN TLD as well. 83 of
the pages directly redirect the user to a standard do-
main and 111 were manually identified as pointing
to the same site as a standard domain. The domains
which had ICANN hostname’s along with their .bit
hostname were manually identified and pinged to
ensure matching IP addresses.

This left us with 28 pages serving non-trivial
content that is uniquely available via .bit.

Our approach to analyzing content suffers from
a few limitations. First of all we only queried the
main domain over port 80, thus if any of the servers
only respond to subdomains or only serve content
over HTTPS, they are not included. Additionally
when we detect how much content is on each page,
we do not follow links and thus content could be
hidden behind links. Despite these limitations we
believe that we have missed very few legitimate do-
mains.

4.4 Examining Squatter Name Choice
As we have seen, many individual squatters buy

up very large numbers of domains. We now explore
what sort of categories these names fall into and try
to interpret the decisions these squatters have made.
Here we explore two potential measures of name

Figure 3: For each 1≤ n≤ 1,000,000, the prob-
ability that .bit versions of domains with Alexa
rank approximately n are registered.

desirability, one using Alexa ranking, and one using
the length of the name.

We can see from Figure 3 and Figure 4 that there
are patterns to the names that squatters have ac-
quired. In Figure 3, we can see that squatters have
claimed the majority of very high ranking Alexa
sites.

In Figure 4 we see that there is a preference for
shorter names. Table 3 shows that in fact all one-
and two-character names are taken. It is not un-
til we get to names with at least three characters
that there are names available to register. Beyond
three characters, the combinatorial nature of name
strings makes it infeasible to register all names of
that length. There are more names with a length
of 4 available than there are total names registered
currently.

Alexa ranking and name length are not an ex-
haustive description of squatter behavior. Future
work would attempt to better model the valuation
that squatters and other namespace participants put
on names.

5 Secondary market analysis
Next, we seek to understand and quantify how

names move between users. Our basic scenario
is that Alice owns the name ‘d/example’ and Bob
would like to purchase it from her. We explore var-
ious ways this sale can occur and how these sales
can be detected.

11



Figure 5: Anatomy of an atomic name transfer. Both the name and the payment are included in
the same transaction, so one cannot fail to transfer to the other party without the other failing to
transfer.

Figure 4: The number of Namecoin names
registered as a function of name length.

Name length Percent registered
1 100.00%
2 100.00%
3 58.61%
4 1.00%
5 0.02%
...

...

Table 3: Percent of all domains of registered by
length. All possible names are counted combi-
natorially using the rules given by [7].

5.1 Detecting atomic transfers
The safest way to buy and sell Namecoin names

is through the use of atomic transactions. This is an
important technique in cryptocurrencies whereby
two parties can exchange digital assets (such as a
name in exchange for currency) without a trusted
intermediary without either worrying that the other
will abscond after receiving her half of the bargain.
We show how these transactions work in Figure 5.
In an atomic transaction, Alice and Bob make their
exchange in a single transaction. In the simplest
form of atomic name transfer, Bob creates a trans-
action which transfers his payment to Alice and
transfers ‘d/example’ to him. He then sends this
transaction to Alice, the owner of the name, who
verifies it, signs, and broadcasts the transaction to
the block chain. Both Alice and Bob’s signatures
are locked to the inputs and outputs of the transac-
tion so neither input can be spent individually with-
out the full transaction. This transaction provides
cryptographic security to both Alice and Bob since
either both the name and coins will be exchanged or
nothing will. Although there is nothing inherently
different looking about this transaction on the block
chain, there are a few possible techniques to detect
them by implementation quirks.

The Namecoin client is a fairly underdeveloped
piece of software and thus there is no built-in
method of performing atomic transactions. In or-
der to accomplish this task, the Namecoin RPC

12



client must be used from the command line. In
order to simplify this task, a Namecoin developer
created ANTPY [20], a piece of software to auto-
mate the creation of atomic transactions. This soft-
ware has the quirk that the buyer’s payment goes
to the address that the seller held the name in. To
find these transactions we queried the block chain
for transactions with a NAME_FIRSTUPDATE or
NAME_UPDATE input from the same address as a
non name output. We then further reduced this set
by eliminating transactions where the name stayed
at the same address.

We searched throughout the history of the Name-
coin block chain for transactions fitting this specifi-
cation. Our query returned 13 transactions which
we believe represent all transactions built by the
ANTPY script. However this by no means repre-
sents all sales on the block chain. We next attempt
to discover atomic transactions in a different way.

A implementation-agnostic method for detecting
atomic name transfers is to find transactions that
clearly use change addresses. This occurs when
there are two non-name outputs in a transaction
that has a name input. In this case the buyer did
not want to pay all of his input to the seller and
thus kept some for himself. This leaves the transac-
tion with 3 outputs. Under normal circumstances,
NAME_UPDATE transactions will only have two
outputs, a name output and a change address. Thus
every transaction with three outputs is very likely
an atomic name transfer.

In the history of the Namecoin block chain, we
found 6 transactions fitting this form. However 5 of
the 6 were also detected by the previous (ANTPY)
criterion.

The 14 atomic transactions which we detected
are a lower bound for the number of name trans-
fers. We are unable to query for all atomic trans-
actions since if the buyer doesn’t want any change
from a purchase and the seller gives the buyer a new
address to send payment to, the transaction is indis-
tinguishable from a regular non-transferring name
update.

5.2 Deriving an upper bound on number
of sales

Following up on our lower bound from the pre-
vious section, we now derive an upper bound on
the number of name sales using data from the block

Figure 6: Number of transfers detected based
on squatting threshold. For each n on the x-
axis (5≤ n≤ 25), we plot the number of squat-
ter→ non-squatter transactions detected if we
characterize names whose values occur n or
more times as squatted.

chain. Whereas atomic transactions, can (some-
times) be recognized simply from their contents,
other name sale transactions are not recognizable.
Here the payment could be a separate transaction or
even made in a currency other than Namecoin. We
would hope that we could detect changes in name
ownership by looking at changes in which key owns
a name. However, since the Namecoin client de-
faults to sending names to new addresses on update,
there is no way to look at an update and tell whether
or not a name is being transferred between owners.

In order to detect non-atomic transactions we
must expand our view to the prior value of a name
being updated. Certainly if the value does not
change then the transaction is simply renewing the
name, not transferring it. However considering all
other transactions to be name transfers is far too
conservative of a criterion. Users freely update the
values of names whenever information in them be-
comes outdated.

Although there doesn’t seem to be a way to de-
tect non-atomic name transfers generally, there is
an important subclass of these transactions which
can still be detected — transfers from squatters to
regular users. In the previous section we discussed
our detection of squatters in the block chain which
produces a list of values which with a high proba-
bility belong to squatters. Detecting transfers from
squatters by finding names that change from one of

13



these values to a value outside this set gives us a
strategy to detect transfers.

We employ an additional criterion to eliminate
false positives to tighten our upper bound. If a
name’s value includes an info or email field and that
stays the same in the updated value we can assume
this is simply an update by the squatter.

Applying this analysis at various squatter thresh-
old values, we see that the total number of squatter
→ non-squatter transactions detected holds at ap-
proximately 250 transactions. We emphasize that
this value is likely an upper-bound since our cri-
teria for reducing the number of transactions were
quite conservative.

To summarize, we would expect that given the
high percentage of squatted .bit names, if there is
a flourishing secondary market it would be domi-
nated by sales from squatters to regular users. Yet
we are able to upper bound the number of such
transfers to about 250, a tiny fraction of the number
of squatted names. Further, even though Namecoin
supports a secure way to transfer names, we find
strong evidence based on known tools supporting
this functionality that its usage is very low.

6 Exploring namespace design
choices

Throughout this section we will refer to the con-
cept of the decentralized algorithmic agent that we
introduced in Section 3. Several of the options we
explore will require this agent to implement rather
complex algorithms. We will not directly address
the question of practical feasibility of complex de-
centralized agents. We note, however, that based on
proposed designs, these agents can be surprisingly
powerful; we refer the reader to [6, 21, 22].

6.1 Control of names

At any point in time, each name is either con-
trolled by some user or is unclaimed. In the latter
case, it can be considered to be owned by the de-
centralized agent encoded into the cryptocurrency,
and is on the primary market. Any user can attempt
to purchase any name on the primary market. We
will return later to the question of how the name is
priced.

When a name is controlled by a user, how strong
is that control? We can consider a hierarchy of in-
creasingly weaker forms of control.

1. Control lasts forever and names cannot be
transferred. It is straightforward to design a names-
pace in such a way that names are non-transferable
(in Namecoin, it would be a matter of requiring the
input and output of a NAME_UPDATE transaction
to have the same address). Making names non-
transferable would lock authority to update to the
value restricted to the key used to first register the
name. Such a system could deter speculative squat-
ters because a speculator would not be able to sell
a name to another individual. While it would be
possible to transfer the private key that controls a
name, the user receiving it would have no crypto-
graphic assurance that the original owner does still
posses a copy of the key. On the other hand squat-
ters who wish to censor names or simply damage
the system would be undeterred by the inability to
transfer names.

As we noted in Section 3, utility functions
are time-varying, so a technical restriction against
name transfer goes against the logic of the market.
It is possible that most names would be controlled
by squatters who act as dealers and lease names
to users. Essentially this would make the system
a hybrid between a centralized and a decentralized
namespace.

2. Control lasts forever except if the user chooses
to transfer or sell the name. This approach is easy
to understand as it is the most similar to physical
property. A practical problem with this approach is
that if a user loses her key, any names controlled
by that user or key are lost forever. This may also
happen if a user leaves the system, but this prob-
lem can be alleviated by having the primary market
agent buy back names from users. This incentivizes
the user to give up the name before leaving the sys-
tem even if she can’t find a seller for it. The agent
essentially acts as an automated market maker.

3. Names expire after a fixed period, except if
the user renews it. This is a practical choice that
avoids the problems pointed out above, especially
if the renewal fee is very small compared to the
price of the name on the primary market. We ex-
pect that a rational user will keep renewing a name
she controls unless her utility drops to near-zero, or
she loses the associated private key and therefore

14



can’t update the name. If the renewal fee is sub-
stantial, this becomes similar to a lease instead of
ownership. The renewal fee is paid to the agent.

Finally, the agent may pay the user if she lets her
name expires, returning her original fee to her. This
is analogous to a deposit.

4. Names always expire after a fixed period and
return to the primary market. Seizure or censor-
ship becomes easy. Additionally, if we imagine that
names appreciate in price by being used, just as
land that is developed increases in value, this dis-
incentivizes users from putting names to use since
they have no expectation of being able to hold on
to them. So this model is clearly inappropriate for
applications like domain names, but perhaps useful
in other contexts.

5. Control over names may be preempted by
other users. This is an idea that has been proposed
several times in the context of Namecoin, allowing
users to either force a name to return to the primary
market or even directly acquire it by paying the a
fee to the agent and/or the current owner. This is in-
tended to alleviate squatting, but it is hard to imag-
ine this approach being superior to a functioning
secondary market. On the other hand, the down-
sides are clear: seizures are now possible, and as
before, uncertainty over future ownership may dis-
courage legitimate use.

6.2 Markets and fees
Primary market: auctions vs. algorithmic

pricing. There are essentially two choices for the
primary market: auction and algorithmic pricing.
Auctions are appealing, but there are practical prob-
lems due to the infinite number of names. For ex-
ample, let’s say an auction for a name is triggered
whenever any user expresses an interest in buying
that name. Since there are a potentially infinite
number of names that a user is interested in, she
would have to be able to participate in an auction at
any time, which is a problematic assumption. Al-
ternatively, names could go up for auction at fixed
times, but this also has practical downsides.

On the other hand, names can be priced algo-
rithmically. This is more applicable for applica-
tions like domain names than for personal names-
paces. In the former case the utility of a name is
less dependent on the user and therefore easier to
price based on publicly available data. Several fac-

tors based on publicly available data can be incor-
porated into the pricing model: name length, fre-
quency of the name (treated as a word) in text found
on the web, traffic rank of the corresponding .com
domain, and so on. Pricing can also vary with time;
a blended model between auctions and algorithmic
pricing would see initial prices decided algorithmi-
cally which decline steadily over time in a form of
Dutch auction. Again the challenges in implement-
ing this are practical: incorporating data external to
the block chain into the computation of distributed
agents is possible, but very complex and has not
been successfully demonstrated in practice. If the
secondary market is implemented within the sys-
tem (see below), then the agent has access to pric-
ing data for other similar names as well as for the
same name if it was previously sold on the sec-
ondary market.

There is an interesting technical limitation of
agents which affects algorithmic pricing. Since the
agent doesn’t have private storage, an adversarial
node in the peer-to-peer network can intercept a
user’s request to the agent to purchase a name, and
try to purchase that name ahead of the user, per-
haps in the hope of turning around and selling it
to the user. This is analogous to front running. In
fact, front running is a problem in the current DNS
as well, carried out by intermediaries that provide
domain registry search services [23]. Fortunately,
in the cryptocurrency context there’s a simple cryp-
tographic solution: the user first presents a sealed
bid to the agent (here it is the name that needs to
be sealed, not the price, which is public); after this
message is confirmed in the block chain, the user
(from the same address) reveals the name. Now the
adversary cannot front run the user because he can-
not spoof messages (transactions) from the user’s
address.5

Namecoin uses a simple model of a flat fee for all
domains that varies with time (which we can think
of as a trivial case of algorithmic pricing).

Secondary market. As long as the technical ca-
pability to transfer names exist, we would expect
a secondary market to develop without any further
design support. In addition, the ability to transfer

5This is the approach used in Namecoin, and the reason
why NAME_NEW and NAME_FIRSTUPDATE need to be dis-
tinct operations separated by a 12-block waiting period, as de-
scribed in Section 2.3.

15



names and payment in a single atomic transaction
allows parties to transact without a trusted interme-
diary. This is straightforward to implement techni-
cally as we discussed in Section 5; Bitcoin and most
altcoins including Namecoin support it.

However, there are benefits to the capability to
post bids and offers on the block chain as well as
execute trades. First, as a practical matter, when
cryptocurrencies are in the bootstrapping stage, ex-
changes may not develop or may be fragmented.
We see this problem with Namecoin. Secondary
markets for DNS names are also fragmented. A
fragmented or non-existent secondary market may
in turn inhibit adoption of the namespace. Inte-
grating an exchange (implemented, of course, in
a decentralized form) may prevent this problem.
As an interesting historical aside, early versions
of Satoshi Nakamoto’s Bitcoin code contained ex-
change functionality in prototype stage, but this
was never rolled out [24]. Second, as mentioned
above, executing trades via the block chain allows
the agent direct access to price data, and this may
help with algorithmic pricing. Finally, integrating
an exchange allows shaping the secondary market,
for example, by charging a fee for trades. As men-
tioned earlier, it is technically feasible to deter pri-
vate trades; this would force or incentivize trades to
happen through the integrated exchange.

6.3 The agent’s finances
In a centralized namespace, the owner of the

namespace has a clear goal of maximizing revenue
from name sales. In a decentralized system, this is
typically not a meaningful goal. After all, the agent
is not a real-world entity. How, then, should the
agent handle its finances?

Our first simplifying observation is that there is
no point in the agent holding on to any funds —
even if it needs to buy names from users, it can
simply print money (introduce new coins into the
system) as necessary. Of course, from a practical
perspective it may be easier to have the agent store
funds; this corresponds to the proposal in Name-
coin to treat registration fees as deposits and to hold
them in “escrow” [25]. Conceptually, however, we
can get rid of this option.

That leaves two options. The first is to distribute
its revenue to miners, in proportion to their hash
power at the time of the transaction. This is techni-

cally straightforward to do by structuring payments
as transaction fees to be collected by the miner who
first mines a block containing that transaction. The
other option is to “burn” the coins representing the
payment, i.e., mark them as permanently unspend-
able. This is also technically trivial. Assuming that
the market capitalization of the currency is unaf-
fected by burning some of it, it has the effect of dis-
tributing the agent’s revenue to all holders of the
currency in proportion to their holding. Both of
these appear to be reasonable options, and Name-
coin has used both; it is not clear which is better
in terms of incentivizing the long-term growth and
security of the system.

7 Related Work
Here we discuss attempts besides Namecoin at

decentralized cryptocurrency-based namespaces or
domain-name systems and more broadly technolo-
gies that utilize the block chain.

Bitshares is another altcoin that includes propos-
als for a namespace as one of its goals [26]. Emer-
coin recently emerged as a Namecoin competitor
[27].

More broadly, the ability to publish messages
to the block chain immediately allows a variety of
applications. Physical property, shares of stocks,
bonds, or any other real asset can be digitally repre-
sented on the block chain. Overlay protocols such
as Mastercoin and Colored Coins specify a syn-
tax and semantics for such digital representations
[28, 29]. CommitCoin allows for putting hash com-
mitments on the Bitcoin block chain in order to
timestamp data in a trustless manner [30].

There are a number of more complex applica-
tions that require additional primitives. Financial
derivatives are contracts whose value depends, in
some mutually agreed-upon way, on the price (or
movements in price) of an underlying asset. Im-
plementing derivatives of digital assets, then, re-
quires user-defined logic (or scripts) for transac-
tion validation. This can be accomplished via an
altcoin with a flexible scripting language such as
Ethereum [21]. Furthermore, since derivatives de-
pend on prices, scripts that implement them require
access to price feeds as input. Otherwise, it requires
a trusted third party (known by a Bitcoin address)
to regularly publish suitably encoded, signed price

16



statements reflecting external reality. These can be
published directly to the block chain or distributed
off-chain and only added to the block chain when
needed to redeem an asset. More generally, such
entities could publish any data feed representing
news or other events.

Bitcoin can act as a platform for fair secure mul-
tiparty computation [31, 32, 33]. These are SMC
protocols augmented with Bitcoin operations, e.g.,
a payment from one participant to another, or a de-
posit.

Finally, a set of related ideas known as decen-
tralized autonomous organizations (among several
other names) has stirred considerable excitement
in the community recently. These combine several
primitives discussed above — digital assets, long-
lived scripts implementing arbitrary logic govern-
ing those assets, data feeds, and out-of-band com-
munication. Some proposals for DAOs incorporate
human input in various forms: one is a decentral-
ized agent farming out computationally intractable
tasks to humans [34]. Another is voting by share-
holders of decentralized agents to enable modifica-
tions to the logic (i.e., script).

8 Discussion and Conclusion
Our empirical analysis of Namecoin and explo-

ration of the design space reveal several potential
mechanism design weaknesses. First, Namecoin’s
fees are far too low to deter squatters. The system
utilizes neither an auction nor algorithmic pricing
that might help price names near their market value.
Worse, users who paid a high network fee in the
early period and who wish to leave the system have
no way to recoup any of their investment by return-
ing the name to the primary market.

These problems are exacerbated by the lack of
a functioning secondary market. Buying a squat-
ted name, even if contact information is available
on the block chain, is a cumbersome manual pro-
cess. There is no way to, say, search for all names
available for sale matching a given string and be-
low a specified price limit. Namecoin does not in-
tegrate an exchange into its core functionality, nor
have Namecoin developers chosen to build and pro-
mote one outside the system.

Is a decentralized namespace for domain
names viable? Even with a hypothetical system

where the above weaknesses are fixed, it’s not clear
that it would be a viable platform for a decentral-
ized DNS. Namespaces are a solution to the prob-
lem of mapping names to values. However, in a
domain name system, the problem that needs to be
solved is to map entities — legal entities, brands, or
identities — to addresses/values.

Naturally, mapping entities to names (or directly
to values) is not a purely technical problem, but re-
quires human judgment. In the traditional DNS,
arbitration based on trademark law is a mecha-
nism to prevent names that are confusingly simi-
lar from being controlled by different entities. This
is augmented with Extended Validation certificates,
which, when used, establish the legal identity of the
name owner. With these mechanisms in place, the
user must still provide a name to the system, but at
least she can then verify that it corresponds to the
correct entity she had in mind. This type of verifi-
cation is much harder to incorporate in a decentral-
ized system. We are not aware of any designs for
decentralized systems that attempt to do so.

If such mechanisms are not developed, can de-
centralized namespaces for domain names be viable
at all? Or will they depart so far from user expecta-
tions as to be unusable?

Other solutions for usability might be possible.
Web search engines are used in practice as a way
of mapping entities to names. Indeed, such “nav-
igational queries” are one of the primary ways in
which people use search engines.6 Navigational
queries are about equally viable in centralized and
decentralized systems. Presumably, using search
engines and following links from other sources (in-
cluding bookmarks) will allow a user to gradually
memorize an entity→ name mapping.

Of course, if users always used these nagiva-
tional aids and relied on them entirely to find the
correct name, then those names don’t have to be
human-memorable or user-chosen, so one doesn’t
need a namespace at all. Indeed, .onion domains
force users to rely on navigational aids since names
are public keys and can’t be freely chosen by users.
Anecdotally, however, it is clear that this results in
poor usability and memorable names would be an
improvement.

6Bing reports that about 30% of queries are navigational
[35].

17



We remain neutral on the question of whether
a decentralized namespace for domain names can
be viable. But the human factors we discussed do
complicate the mechanism design question. In Sec-
tion 3 we proposed utility maximization as a (straw-
man) goal of the mechanism, and suggested that
an auction would satisfy this goal. However, in an
auction-based system, it may turn out that an adver-
sary interested in phishing has a higher utility for
(say) bankofamerica.com than Bank of Amer-
ica does. It is not clear how to design a mechanism
that will discourage such outcomes.

Comparison between .bit and OneName. In
contrast to the .bit subspace, the online identity ser-
vice, OneName, has a very large user base. We
found that after limiting the number of name/value
pairs to only those with unique, well formed entries
(using the strategies listed in section 5) OneName
has roughly 20,000 pairs, which dwarfs the 1000
or so .bit domains. It is too early to tell whether or
not these users are putting their OneName identities
to any real use, but at least in terms of registration
numbers, interest appears to be high.

Perhaps the biggest reason for this is that while
scarce, OneName names are not nearly as valuable
as domain names, and so it is far less important to
get the mechanism design right, or have any mech-
anism at all. Unlike domain names that must be
remembered by humans, users typically find One-
Name identities through links from other social me-
dia services or by searching for the individual’s real
name.

A second reason is that OneName benefits from
being a centralized service on top of a decentralized
protocol, OpenName (which, as of this writing, is
implemented on top of Namecoin). If a name is
squatted, a typical user who wants that name might
not even know how to contact the squatter because
they are trying to register a name through the One-
Name website which doesn’t facilitate this process.
While a user could technically interact with the ‘u/’
subspace of the block chain directly, most One-
Name users don’t.

The .bit subspace, on the other hand, suffers from
the lack of any centralized service providers cou-
pled with the poor usability of the client software.
A new user faces many significant hurdles in regis-
tering a name. The first step is acquiring a Name-
coin client which requires downloading, verifying,

and storing the entire block chain, which is cur-
rently about 1.6 GB. Then she must acquire NMC,
which requires connecting the user’s wallet on a
cryptocurrency exchange (which supports Name-
coin) to her bank account. In our experience, there
is a 3-day wait after registering with an exchange
and being allowed to transfer funds. Now the user
is finally ready to register names, but she must also
remember to update names every 250 days or run
software in the background that will automatically
handle this.

In conclusion, designers of decentralized names-
paces must pay careful attention to mechanism de-
sign to deter squatters and facilitate a healthy sec-
ondary market. Further, the usability of the overall
ecosystem, which includes not just users who own
names but the applications that utilize the names-
pace for web browsing or other tasks, is paramount.
Finally, a hybrid model of centralized services
that utilize an underlying decentralized platform is
worth considering.

Acknowledgement. We would like to thank Ed
Felten and Muneeb Ali for helpful discussions and
feedback. This work was supported in part by NSF
Grant CNS-1421689.

References
[1] Paul Mutton. WikiLeaks.org taken down

by US DNS provider. URL http:
//news.netcraft.com/archives/
2010/12/03/wikileaks-org-taken-
down-by-us-dns-provider.html.

[2] Wikipedia. Zooko’s triangle, . URL
http://en.wikipedia.org/wiki/
Zooko%27s_triangle.

[3] Aaron Swartz. Squaring the triangle: Secure,
decentralized, human-readable names. URL
http://www.aaronsw.com/weblog/
squarezooko.

[4] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. URL https://bitcoin.
org/bitcoin.pdf.

[5] appamatto. Bitdns and generalizing bitcoin.
URL https://bitcointalk.org/index.
php?topic=1790.0.

[6] J Bonneau, J Clark, E Felten, J Kroll, A Miller,
and A Narayanan. On decentralizing prediction
markets and order books. In Workshop on the

18

http://news.netcraft.com/archives/2010/12/03/wikileaks-org-taken-down-by-us-dns-provider.html
http://news.netcraft.com/archives/2010/12/03/wikileaks-org-taken-down-by-us-dns-provider.html
http://news.netcraft.com/archives/2010/12/03/wikileaks-org-taken-down-by-us-dns-provider.html
http://news.netcraft.com/archives/2010/12/03/wikileaks-org-taken-down-by-us-dns-provider.html
http://en.wikipedia.org/wiki/Zooko%27s_triangle
http://en.wikipedia.org/wiki/Zooko%27s_triangle
http://www.aaronsw.com/weblog/squarezooko
http://www.aaronsw.com/weblog/squarezooko
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=1790.0
https://bitcointalk.org/index.php?topic=1790.0


Economics of Information Security, 2014. URL
http://weis2014.econinfosec.org/
papers/Clark-WEIS2014.pdf.

[7] Domain name specification, 2015. URL https:
//wiki.namecoin.info/index.php?
title=Domain_Name_Specification.

[8] khalahan. Nmcontrol. URL https://github.
com/khalahan/nmcontrol.

[9] Freespeechme website. URL http://www.
freespeechme.org/.

[10] Greg Slepak. Dnschain. URL https://
github.com/okTurtles/dnschain.

[11] Opennic project. URL http://www.
opennicproject.org/.

[12] Keybase. Keybase. URL https://keybase.
io/.

[13] Luke A Walker. Icann’s uniform domain name
dispute resolution policy. Berk. Tech. LJ, 15:289,
2000.

[14] William L Silber. Marketmaker behavior in an
auction market: an analysis of scalpers in futures
markets. The Journal of Finance, 39(4):937–953,
1984.

[15] John R Ottensmann. Urban sprawl, land values
and the density of development. Land economics,
pages 389–400, 1977.

[16] Atila Abdulkadiroglu and Tayfun Sönmez. Match-
ing markets: Theory and practice. In Advances
in Economics and Econometrics (Tenth World
Congress), pages 3–47, 2013.

[17] Daniel. Proposal: Domains should be
regularly auctioned. URL https:
//forum.namecoin.info/viewtopic.
php?f=11&t=2003.

[18] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. Technical report, DTIC Document, 2004.

[19] Juan Pablo Timpanaro, Chrisment Isabelle, and
Festor Olivier. Monitoring the i2p network.
2011. URL https://hal.inria.fr/hal-
00653136/document.

[20] ANTPY Github. Bitcoin github com-
mit history. URL https://github.
com/bitcoin/bitcoin/commit/
5253d1ab77fab1995ede03fb934ed.

[21] Ethereum white paper, 2015. URL
https://github.com/ethereum/wiki/
wiki/White-Paper.

[22] Bitcoin Wiki. Agents. URL https://en.
bitcoin.it/wiki/Agents.

[23] Wikipedia. Domain name front running, .
URL https://en.wikipedia.org/wiki/
Domain_name_front_running.

[24] phelixbtc. Bitcoin github. URL https://
github.com/phelixbtc/antpy.

[25] Namecoin Forum. Idea for better fee struc-
ture. URL https://forum.namecoin.
info/viewtopic.php?p=6653&sid=
2cf37d245bbc611a8d93ad6ac23b9982.

[26] .p2p (bitshares dns), 2015. URL http:
//wiki.bitshares.org/index.php/
.p2p_%28BitShares_DNS%29.

[27] Emercoin, 2015. URL http://emercoin.
com/.

[28] Mastercoin protocol specification, 2015. URL
https://github.com/mastercoin-
MSC/spec.

[29] Meni Rosenfeld. Overview of colored coins,
2012. URL https://bitcoil.co.il/
BitcoinX.pdf.

[30] Jeremy Clark and Aleksander Essex. Commitcoin:
Carbon dating commitments with bitcoin. In Fi-
nancial Cryptography and Data Security, pages
390–398. Springer, 2012. doi:10.1007/978-3-642-
32946-3_28.

[31] Marcin Andrychowicz, Stefan Dziembowski,
Daniel Malinowski, and Lukasz Mazurek.
Secure multiparty computations on bitcoin.
In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 443–458. IEEE, 2014.
doi:10.1109/SP.2014.35.

[32] Iddo Bentov and Ranjit Kumaresan. How to use
bitcoin to design fair protocols. In Advances
in Cryptology–CRYPTO 2014, pages 421–439.
Springer, 2014. doi:10.1007/978-3-662-44381-
1_24.

[33] Ranjit Kumaresan and Iddo Bentov. How
to use bitcoin to incentivize correct compu-
tations. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Commu-
nications Security, pages 30–41. ACM, 2014.
doi:10.1145/2660267.2660380.

19

http://weis2014.econinfosec.org/papers/Clark-WEIS2014.pdf
http://weis2014.econinfosec.org/papers/Clark-WEIS2014.pdf
https://wiki.namecoin.info/index.php?title=Domain_Name_Specification
https://wiki.namecoin.info/index.php?title=Domain_Name_Specification
https://wiki.namecoin.info/index.php?title=Domain_Name_Specification
https://github.com/khalahan/nmcontrol
https://github.com/khalahan/nmcontrol
http://www.freespeechme.org/
http://www.freespeechme.org/
https://github.com/okTurtles/dnschain
https://github.com/okTurtles/dnschain
http://www.opennicproject.org/
http://www.opennicproject.org/
https://keybase.io/
https://keybase.io/
https://forum.namecoin.info/viewtopic.php?f=11&t=2003
https://forum.namecoin.info/viewtopic.php?f=11&t=2003
https://forum.namecoin.info/viewtopic.php?f=11&t=2003
https://hal.inria.fr/hal-00653136/document
https://hal.inria.fr/hal-00653136/document
https://github.com/bitcoin/bitcoin/commit/5253d1ab77fab1995ede03fb934ed
https://github.com/bitcoin/bitcoin/commit/5253d1ab77fab1995ede03fb934ed
https://github.com/bitcoin/bitcoin/commit/5253d1ab77fab1995ede03fb934ed
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://en.bitcoin.it/wiki/Agents
https://en.bitcoin.it/wiki/Agents
https://en.wikipedia.org/wiki/Domain_name_front_running
https://en.wikipedia.org/wiki/Domain_name_front_running
https://github.com/phelixbtc/antpy
https://github.com/phelixbtc/antpy
https://forum.namecoin.info/viewtopic.php?p=6653&sid=2cf37d245bbc611a8d93ad6ac23b9982
https://forum.namecoin.info/viewtopic.php?p=6653&sid=2cf37d245bbc611a8d93ad6ac23b9982
https://forum.namecoin.info/viewtopic.php?p=6653&sid=2cf37d245bbc611a8d93ad6ac23b9982
http://wiki.bitshares.org/index.php/.p2p_%28BitShares_DNS%29
http://wiki.bitshares.org/index.php/.p2p_%28BitShares_DNS%29
http://wiki.bitshares.org/index.php/.p2p_%28BitShares_DNS%29
http://emercoin.com/
http://emercoin.com/
https://github.com/mastercoin-MSC/spec
https://github.com/mastercoin-MSC/spec
https://bitcoil.co.il/BitcoinX.pdf
https://bitcoil.co.il/BitcoinX.pdf
http://dx.doi.org/10.1007/978-3-642-32946-3_28
http://dx.doi.org/10.1007/978-3-642-32946-3_28
http://dx.doi.org/10.1109/SP.2014.35
http://dx.doi.org/10.1007/978-3-662-44381-1_24
http://dx.doi.org/10.1007/978-3-662-44381-1_24
http://dx.doi.org/10.1145/2660267.2660380


[34] Vitalik Buterin. Daos, dacs, das and more:
An incomplete terminology guide, 2014. URL
https://blog.ethereum.org/2014/
05/06/daos-dacs-das-and-more-an-
incomplete-terminology-guide/.

[35] Bing blogs: Making search yours, 2011. URL
http://blogs.bing.com/search/
2011/02/10/making-search-yours/.

20

https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
http://blogs.bing.com/search/2011/02/10/making-search-yours/
http://blogs.bing.com/search/2011/02/10/making-search-yours/


A List of significant .bit domains
Below is a list of names counted towards the last en-

try in Table 2. These domains were determined by the
proccess described in Section 4.

• alt-freedom.bit

• bangkokgroup.bit

• bitcoinpl.bit

• bitcoinquotes.bit

• carnicominstitutemirror.bit

• changepurse.bit

• columbo.bit

• darkfur93.bit

• dcinvestments.bit

• dealing.bit

• deathrowdemocracy.bit

• dot-bit.bit

• dotbitkittypix.bit

• feens.bit

• hewgill.bit

• hosting.bit

• kk-cabrio.bit

• lapan.bit

• medicinalgenomics.bit

• megabrutal.bit

• michail.bit

• mikeward.bit

• namecoin-test-suite-1.bit

• onemillionpixels.bit

• peterboswell.bit

• rmgx.bit

• tuler.bit

• wikimouto.bit

21


	Introduction
	Background: Namecoin
	History
	Description of the block chain
	Technical details of names
	Mechanism design
	Applications

	Modeling namespaces
	Analysis of .bit domains
	Detecting squatters
	DNS records
	Domain content analysis
	Examining Squatter Name Choice

	Secondary market analysis
	Detecting atomic transfers
	Deriving an upper bound on number of sales

	Exploring namespace design choices
	Control of names
	Markets and fees
	The agent's finances

	Related Work
	Discussion and Conclusion
	List of significant .bit domains

