15 января 2020 BitCryptoNews
После десятилетий экспериментов, миллиардов долларов инвестиций по всему миру и неуверенности в успехе, исследователи все-таки доказали, что квантовый компьютер может работать эффективнее традиционных. Ранее компания Google опубликована статью в научном журнале Nature, в которой сообщила о разработке революционной модели вычислений и достижении квантового превосходства.
Новые горизонты
Прежде всего, квантовые компьютеры могут сделать широко применяемые коды шифрования устаревшими, что стимулирует некоторые финансовые организации и институты разрабатывать защитные алгоритмы нового типа. Кроме того, технология поможет решить массу проблем бизнеса, связанных с оптимизацией отдельных организационных процессов и всей деятельности компании в целом.
Потенциал этих устройств настолько огромен, что позволит за считанные минуты находить ответы на вопросы, непосильные для традиционных методов вычислений, или решить проблемы, о которых сейчас никто даже не догадывается.
Например, как избежать потерь электроэнергии при ее прохождении через линии электропередачи, как использовать азот, находящийся в воздухе, для создания удобрений для растений, или определить какие молекулы нужно соединить, чтобы получить новые жизненно важные лекарства без траты времени и денег на годы лабораторных исследования без каких-либо гарантий на успех.
Все эти проблемы объединяет их сложность и тайны удивительных взаимодействия субатомного мира. Именно здесь вступает в игру причудливая логика квантовой механики.
Странность квантовых вычислений
Дело в том, что в квантовой механике правила, к которым мы привыкли и можем наблюдать вокруг, например, описанные Ньютоном законы физики, не работают. В нашем мире объекты находятся в определенном состоянии, положении и движутся в конкретном направлении. Для классических вычислений это означит, что основная единица информации (бит) может быть только 0 или 1.
Странные правила квантовой механики позволяют элементарным частицам, таким как электроны или фотоны, не иметь простого, определенного состояния. То есть они могут одновременно быть волновым полем и материей, иметь бесконечное количество возможных положений в каждый определенный момент времени, бесследно исчезать из одного места и тут же появляться в другом.
Именно эти особенности частиц и используются в квантовых транзисторах, которые являются основными составляющими вычислительных устройств.
Однако команда Google решила пойти дальше и объединить квантовую механику с информационными технологиями. Это позволило исследователям получить комбинацию, которая, по их словам, вместо того, чтобы просто указывать вверх или вниз (0 или 1), может отобразить каждую точку в любом направлении вокруг сферы. Такая многозадачность система одновременно может обрабатывать гораздо больше информации.
Находясь в запутанных состояниях, квантовые биты (кубиты) могут взаимодействовать друг с другом, что позволяет объединять их для решения конкретных задач.
При этом в отличие от классического компьютера, который методично прокладывает свой путь к ответу через две возможные величины, квантовый хаотично мечется в поисках подходящего результата, пока не достигнет цели. Поэтому в ходе данного процесса могут возникать незначительные просчеты и отклонения, которые постепенно накапливаются и могут приводить к ошибкам, что на сегодня является одной их главных проблем технологии. Однако ученые уже разрабатывают методы борьбы с погрешностями.
Квантовая неопределенность
Скорее всего, в вашем следующем смартфоне не будут использоваться квантовые вычисления, но за следующее десятилетние они могут постепенно проникнуть в нашу повседневную жизнь.
Правда в том, что никто еще точно не знает, как данная технология изменят мир. Эффект может проявиться в новых инженерных подходах, неожиданных химических формулах, способах решения проблемы изменения климата или повышении энергоэффективности.
Сами исследователи пока не могут предсказать, в каких направлениях квантовые компьютеры будут работать лучше традиционных, поскольку не могут предусмотреть всех возможных аспектов.
Новые горизонты
Прежде всего, квантовые компьютеры могут сделать широко применяемые коды шифрования устаревшими, что стимулирует некоторые финансовые организации и институты разрабатывать защитные алгоритмы нового типа. Кроме того, технология поможет решить массу проблем бизнеса, связанных с оптимизацией отдельных организационных процессов и всей деятельности компании в целом.
Потенциал этих устройств настолько огромен, что позволит за считанные минуты находить ответы на вопросы, непосильные для традиционных методов вычислений, или решить проблемы, о которых сейчас никто даже не догадывается.
Например, как избежать потерь электроэнергии при ее прохождении через линии электропередачи, как использовать азот, находящийся в воздухе, для создания удобрений для растений, или определить какие молекулы нужно соединить, чтобы получить новые жизненно важные лекарства без траты времени и денег на годы лабораторных исследования без каких-либо гарантий на успех.
Все эти проблемы объединяет их сложность и тайны удивительных взаимодействия субатомного мира. Именно здесь вступает в игру причудливая логика квантовой механики.
Странность квантовых вычислений
Дело в том, что в квантовой механике правила, к которым мы привыкли и можем наблюдать вокруг, например, описанные Ньютоном законы физики, не работают. В нашем мире объекты находятся в определенном состоянии, положении и движутся в конкретном направлении. Для классических вычислений это означит, что основная единица информации (бит) может быть только 0 или 1.
Странные правила квантовой механики позволяют элементарным частицам, таким как электроны или фотоны, не иметь простого, определенного состояния. То есть они могут одновременно быть волновым полем и материей, иметь бесконечное количество возможных положений в каждый определенный момент времени, бесследно исчезать из одного места и тут же появляться в другом.
Именно эти особенности частиц и используются в квантовых транзисторах, которые являются основными составляющими вычислительных устройств.
Однако команда Google решила пойти дальше и объединить квантовую механику с информационными технологиями. Это позволило исследователям получить комбинацию, которая, по их словам, вместо того, чтобы просто указывать вверх или вниз (0 или 1), может отобразить каждую точку в любом направлении вокруг сферы. Такая многозадачность система одновременно может обрабатывать гораздо больше информации.
Находясь в запутанных состояниях, квантовые биты (кубиты) могут взаимодействовать друг с другом, что позволяет объединять их для решения конкретных задач.
При этом в отличие от классического компьютера, который методично прокладывает свой путь к ответу через две возможные величины, квантовый хаотично мечется в поисках подходящего результата, пока не достигнет цели. Поэтому в ходе данного процесса могут возникать незначительные просчеты и отклонения, которые постепенно накапливаются и могут приводить к ошибкам, что на сегодня является одной их главных проблем технологии. Однако ученые уже разрабатывают методы борьбы с погрешностями.
Квантовая неопределенность
Скорее всего, в вашем следующем смартфоне не будут использоваться квантовые вычисления, но за следующее десятилетние они могут постепенно проникнуть в нашу повседневную жизнь.
Правда в том, что никто еще точно не знает, как данная технология изменят мир. Эффект может проявиться в новых инженерных подходах, неожиданных химических формулах, способах решения проблемы изменения климата или повышении энергоэффективности.
Сами исследователи пока не могут предсказать, в каких направлениях квантовые компьютеры будут работать лучше традиционных, поскольку не могут предусмотреть всех возможных аспектов.
Не является индивидуальной инвестиционной рекомендацией | При копировании ссылка обязательна | Нашли ошибку - выделить и нажать Ctrl+Enter | Жалоба
